Uncategorized
Uncategorized

Uncategorized (8)

Медицина.

  • http://www.biomedcentral.com/news/20011204/04 : News and comment.
  • http://www.lipidsonline.org/ : Lipids Online.
  • http://www.lipidhealth.org/ : Lipids Health.
  • http://www.wellnessweb.com/nutri/marg.htm : Margarine.
  • http://www.faseb.org/ascn/ajcn7799.htm : Trans fatty acids.
  • http://athero.narod.ru/ : С чего начинается атеросклероз?

Методы и вещества.

  • http://www.chem.qmw.ac.uk/iupac/class/lipid.html : Nomenclature of lipids.
  • http://www.chem.qmw.ac.uk/iupac/lipid/appABC.html#appA : Nomenclature of fatty acids.
  • http://www.hovid.com/carotech/pfame.html : Chemistry of methyl esters.
  • http://www.cyberlipid.org/ : Cyberlipid center.http://www.lipid.co.uk/ : Lipid analysis unit. (Работает!)
  • http://www.musc.edu/BCMB/New%20Ceramide/main-2.html : Ceramids.
  • http://www.lipidbank.jp/ : LIPID BANK.

Журналы.

  • http://www.lipidworld.com/home/ : Lipids in Health and Disease.

Газожидкостная хроматография.

В газожидкостной хроматографии (ГЖХ) подвижной фазой служит газ, а неподвижной фазой является жидкость, которая либо нанесена на внутреннюю поверхность колонки (капиллярная колонка), либо на твердый носитель, например диатомовую землю, порошок тефлона или мелкие стеклянные шарики (насадочная колонка). Жидкая фаза для нанесения предварительно растворяется в летучем растворителе, таком, как эфир. Например, мелкие стеклянные шарики погружают в раствор полиэтиленгликоля в эфире и после того, как эфир улетучится, каждый шарик оказывается покрытым слоем полиэтиленгликоля. При температуре, которая обычно используется в газожидкостной хроматографии, полиэтиленгликоль плавится и остается на шариках в виде жидкой пленки. Образец, представляющий собой вещество, способное испаряться без разложения, вводят в жидком состоянии с инертным газом, например гелием, аргоном или азотом, и затем нагревают. Образующаяся газовая смесь проходит через колонку по схеме, показанной на рисунке справа.

 

 

Насадочные колонки обычно имеют диаметр около 0,5 см и длину от 1 до 20 м. Длина капиллярных колонок обычно колеблется в пределах от 30 до 100 м. Для достижения особенно хорошего разрешения применяются капиллярные колонки до 2 км в длину.

 

 

Испаренные вещества постоянно перераспределяются между подвижной газовой фазой и неподвижной жидкой фазой в соответствии с их коэффициентами распределения, в результате чего и происходит хроматографирование. На конце колонки находится подходящий детектор.

 

 

В практике аналитической хроматографии обычно применяют три типа детекторов: катарометр, или детектор по теплопроводности (чувствительность около 10 мкг), аргоновый ионизационный детектор (чувствительность до 10-5 мкг) и пламенно-ионизационный детектор (чувствительность около -5 мкг).

 

 

Наша лаборатория проводит анализ липидов на хроматографах Shimadzu-9A и Shimadzu-14A c пламенно-ионизационным детектором. Для разделения веществ используются как полярные, так и неполярные колонки.

Тонкослойная хроматография

Тонкослойная хроматография (ТСХ) первоначально была разработана для разделения липидов. Хотя хроматография на бумаге быстрее, чем хроматография на колонке, к недостаткам ее следует отнести то, что бумага может быть изготовлена только из материалов на основе целлюлозы, что не позволяет применять ее для разделения неполярных веществ. Тонкослойная хроматография сохраняет все преимущества хроматографии на бумаге, но при этом позволяет использовать любой материал, который можно тонко измельчить и получить затем однородный слой. Это могут быть неорганические вещества, например силикагель, окись алюминия, диатомовая земля и силикат магния, а также органические вещества, в частности целлюлоза, полиамиды и порошок полиэтилена.

Пластинку с закрепленным сорбентом помещают в камеру, содержащую растворитель, и проявляют восходящей хроматографией. После того как фронт растворителя почти достигнет верхнего края, пластинку вынимают из камеры и сушат. Для получения двумерной хроматограммы высушенную пластинку можно повторно хроматографировать под прямым углом в другом растворителе. Положение пятен, как и при хроматографии на бумаге, определяют по окраске, по флуоресценции или при опрыскивании различными реагентами, которые реагируют с веществами в пятне с образованием окрашенных продуктов. Обычно используют следующие реагенты: нингидрин для аминокислот, родамин В для липидов, хлорид сурьмы для стероидов и терпенов, серную кислоту с последующим нагреванием практически для всех органических соединений (происходит обугливание), перманганат калия в серной кислоте для углеводородов, анисовый альдегид в серной кислоте для углеводов, пары брома для олефинов и т. д. Вещества можно элюировать путем соскребания.

Хроматография

Одной из основных задач биохимии, и липидологии в частности, является разделение и идентификация химических соединений. Хроматография — очень эффективный метод для достижения этой цели. Общеизвестно, что метод был разработан в 1906 г. русским ботаникомМихаилом Цветом, который разделял растительные пигменты (отсюда и название); однако следует отметить, что в 1855 г. немецкий химик Карл Рунге применил хроматографию на бумаге для разделения неорганических веществ. Более того, Плиний Старший сообщал о разделении красителей на папирусе и существовании хроматографического теста на железо с использованием папируса. Все же хроматография стала по-настоящему серьезным методом только в 1944 г., после работ Арчера Мартина и Джона Синджа, получивших Нобелевскую премию за разработку методологии распределительной хроматографии.

В настоящее время известно большое число различных видов хроматографии (адсорбционная, распределительная, ионообменная, на молекулярных ситах) и различных приемов их применения (колоночная, на бумаге, тонкослойная, газовая). Это обусловлено тем, что хроматография может использоваться для решения разнообразных задач, начиная от получения относительно больших количеств чистого вещества и кончая аналитическими процедурами, позволяющими идентифицировать какие-либо вещества.

Теоретические основы распределительной хроматографии.

Сильно различающиеся между собой вещества, например железные опилки и частицы стекла, легко можно разделить с помощью магнита; сахар и песок разделяются путем растворения сахара в воде. Однако, если вещества обладают сходными физическими и химическими свойствами, процесс разделения сильно усложняется. Принцип хроматографии состоит в том, что вещества помещают в систему, которая содержит два физически различных компонента — подвижную инеподвижную (стационарную) фазы и в которой разделение по типам молекул происходит за счет различий (часто весьма незначительных) в распределении между этими двумя фазами. Относительная подвижность каждой молекулы зависит от соотношения между движущей силой, которой здесь является движение подвижной фазы, и силами удерживания, к которым в первую очередь следует отнести распределение и адсорбцию.

В распределительной хроматографии принята следующая терминология. Стационарная фаза называется сорбентом. Если сорбент представляет собой жидкость, которая удерживается какимлибо твердым телом, это тело носит название носителя или матрицы. Подвижная фаза называется растворителем или проявителем, а компоненты разделяемой смеси —растворенными веществами.

Распределительная хроматография основана на следующем:
еcли две фазы находятся в контакте друг с другом, причем одна из них или обе содержат растворенное вещество, это вещество будет распределяться между двумя фазами. Этот процесс именуется распределением и количественно описывается коэффициентом распределения, представляющим собой отношение концентраций растворенного вещества в каждой из двух фаз.

Рассмотрим распределительную хроматографию на колонке, где колонкой служит трубка, заполненная сорбентом и растворителем. Раствор, содержащий разделяемую смесь, вводят в колонку так, чтобы растворенные вещества проникли в сорбент. Затем через колонку пропускают растворитель. Хотя сорбент и растворитель распределены по всей колонке равномерно, колонку можно рассматривать как совокупность множества отдельных слоев («теоретических тарелок»), каждый из которых содержит две фазы. Представим, что 256 идентичных молекул,которые равномерно распределяются между неподвижной и подвижной фазами, введены в колонку с 18 теоретическими тарелками (верхний рисунок справа далее по тексту). В верхней теоретической тарелке (начальной) 256 молекул распределены так, что в каждой фазе находится по 128 молекул. При переходе 128 подвижных молекул с первой теоретической тарелки па вторую они распределяются на ней по 64; оставшиеся на первой теоретической тарелке 128 молекул перераспределяются по 64 в каждой фазе, как показано на рисунке. При продвижении подвижных фаз еще на одну теоретическую тарелку снова происходит перераспределение. После 20 последовательных переносов достигается состояние, изображенное на рисунке. Предположим, что на первой теоретической тарелке находится 256 молекул другого типа (на рисунке цифры снаружи колонки), которые в 3 раза больше распределяются в неподвижную фазу. На рисунке показано также их распределение после 20 переносов. Распределение этих двух видов молекул сильно различается, поэтому в результате отделяется значительная часть молекул. Чем больше число теоретических тарелок (т. е. длина колонки), тем лучше разделение. Следует отметить, что при увеличении числа теоретических тарелок вещество распределяется по большей части колонки. В действительности, когда число молекул огромно (т. е. больше 1016), число молекул на первой теоретической тарелке отличается от нуля. С другой стороны, степень распределения уменьшается в том смысле, что большая доля вещества находится на небольшой части теоретических тарелок. Например, после 8 переносов 40% молекул, которые на рисунке распределяются 1:1, содержится в 4/8 теоретических тарелок, после 20 переносов 40% содержится уже в 6/16, или 3/8, теоретических тарелок. Отсюда ясно, что в идеальном случае, когда разделение определяется только распределением, разделение двух веществ будет более эффективным при увеличении длины колонки.

Примеры распределительной хроматографии.

Чаще всего используют два типа распределительной хроматографии — хроматографию на бумаге и тонкослойную. В обоих случаях носитель содержит связанную жидкость: молекулы воды связаны с целлюлозой при хроматографии на бумаге, а при тонкослойной хроматографии с носителем связан растворитель, используемый для получения тонкого слоя. (Эти методы иногда рассматривают как разновидность адсорбционной хроматографии, поскольку степень разделения зависит и от эффектов адсорбции, однако основным процессом здесь является распределение.) Другим примером распределительной хроматографии служит газожидкостная хроматография.

Фосфолипиды являются одними из основных компонентов биомембран, среди них есть биологически активные вещества, они довольно широко используются в пищевой и фармацевтической промышленности.

Рассмотрим кратко некоторые фосфолипиды (см.структурные формулы, отобранные по степени распространенности в природе и важности биологической роли).

Фосфатидилхолин - главный фосфолипид большинства типов животных. Его содержание обычно составляет не менее 50% суммы фосфолипидов. Вторым по значению фосфолипидом у животных обычно является фосфатидилэтаноламин. В большинстве бактерий фосфатидилхолина нет, а более 60—70% их фосфолипидов составляет фосфатидилэтаноламин. Оба липида присутствуют в большинстве растений, для этих организмов очень важен фосфатидилглицерин. Это единственный фосфолипид синезеленых водорослей, главный фосфолипид фотосинтетического аппарата всех растений. Сфингомиелин является важным компонентом клеток эволюционно продвинутых типов животных. В эритроцитах некоторых млекопитающих, в частности овец, он заменяет фосфатидилхолин в качестве главного фосфолипида. Заслуживают упоминания и несколько других фосфолипидов: фосфатидилинозит, дифосфатидилглицерин (кардиолипин), фосфатидилсерин, фосфатидная кислота.

Список ознакомительной информации:

 

THE ALKYL AND ALK-I-ENYL GLYCEROLS IN THE LIVER OF RATS FED LONG-CHAIN ALCOHOLS OR ALKYL GLYCEROLS 
Z.L. BANDI and H.K. MANGOLD and G. HOLMER and E. AAES-JBRGENSEN
Febs Letters Vol. 12, N 4, 217:220, 1971
Abstract: Dietary long-chain alcohols and alkyl glycerols, including polyunsaturated compounds, are incorporated into the alkyl and alk-l-enyl moieties of the ionic alkoxylipids of rat liver, whereas polyunsaturated fatty acids are not.AGE-1971-печень крысы.pdf
Composition of O-Alkyl and O-AIk-l-enyl Moieties in the Glycerolipids of the Human Adrenal 
HSIANG JU LIN, M.S.F. LIE KEN JIE, CLARA LAI HING LEE, and DANIEL HONG SENG LEE
LIPIDS, VOL. 12, N 7, 620:625, 1976
Abstract: A comparison of human adult and fetal adrenals with respect to their levels of glyceryl ether lipids and other lipid components is reported. Fetal glands contained significantly lower levels of alk-l- enyl phosphoglycerides and of choles- terol. Neutral glyceryl ether diesters, and ethanolamine and choline phosphoglycerides were isolated from adult adrenal tissue. The composition of the O-alkylglycerol groups in these lipid fractions was obtained by means of gas chromatography of the trimethylsilyl ethers and diacetyl derivatives; O-alk-l-enyl glycerols were analyzed as their diacetates. About one-half of the alkyl and alk-l-enylglycerol moieties present in glyceryl ether diesters contained hydrocarbon side chains with 20, 22, or 24 carbon atoms. Long hydrocarbon chains (C19-24) were also found in the O-alkyl glycerol moieties present in the total lipids of fetal adrenals.AGE-1977-надпочечн-человек.pdf
Phospholipid Studies of Marine Organisms: of the Sponge Tethya auranfia 1 
Glenn M. Smith and Corl Djerossi
LIPIDS, Vol. 22, N 4, 236:240, 1987
Abstract: The novel unesterified alkyl glycerol monoethers, (2S)-I-(hexadecyloxy)-2,3-propanediol (1), (2SM-(16-methylhepta-decyloxy}-2,3-propanediol (2) and (2S)-l-(15-methylhepta- decyloxy)-2,3-propanediol (3) were isolated from the marine sponge Tethya aurantia and were characterized by spectroscopic methods. These three saturated ethers as well as a series of alk-l'-enyl glycerol monoethers were also encountered in the phospholipids of the same sponge after reduction with LiAIH~. Incorporation experiments with dissociated cells of T. aurantia indicated that [1-'4C] - hexadecanol was incorporated into the unesterified alkylglycerol monoethers.AGE-1987-Губка-Djerassi.pdf
Dietary Supplementation with Ether-Linked Lipids and Tissue Lipid Composition
Merle L. Blank, Edgar A. Cress, Zigrida L. Smith and Fred Snyder
LIPIDS, Vol. 26, N 2, 166:169, 1991
Abstract: The goal of this investigation was to determine the effect of an alkylglycerol dietary supplement on the lipid composition of several major organs. Lipids from kidney, liver, and lung tissues of rats on a laboratory chow diet Icontrols) were compared to lipids from the same tissues of rats that had received oral supplements (300-600 mg/day} of 1-O-alkyl-2,3-diacetyl-sn-glycerol (alkyl groups were 65% 18:1 and 17% 16:1) for six days. Incorporation of the alkylglycerol into tissue lipids was indicated by both the presence of a neutral lipid in liver that had the same chromatographic migration as alkyldiacylglycerols and by a substantial increase (~150% of controls) in the octadecenyl group of the alk-l-enyl- and alkyl-glycerol side chains derived from total phospholipids of all three tissues. Compared to controls, there was a significant increase in the amount of alkylacylglycerophosphocholine in all three tissues of the alkylglycerol supplemented group. Total lipids, total phospholipid phosphorus, or the distribution of phospholipid classes (except for small differences in lung tissue) were not affected by the dietary supplement. The increase in ether lipids was offset by a corresponding decrease in the diacyl subclass in tissues from animals on the alkyldiacetylglycerol supplement. Our results indicate that the amount of ether-linked glycerolipids in rat tissues can be easily increased with dietary supplements of alkylglycerols.AGE-1991-Snyder-крыса.pdf
Alkyl Glycerol Monoethers in the Marine Sponge Desmapsamma anchorata
Leovigildo Ouijano, Francisco Cruz, Irma Navarrete, Patricia Gdmez c and Tirso Rios
LIPIDS, Vol. 29, no. 10 731:734 1994
Abstract: 1-O-Hexadecylglycerol (chimyl alcohol), 1-O-heptadecyl-glycerol and 1-O-octadecylglycerol (batyl alcohol) have been identified as the major native constituents of a mixture of free alkyl glycerol ethers isolated from the contained water and the methanolic extract of the sponge Desmapsamma anchorata. Minor components were the free C14 , C15 , C19 , C20 and C21 alkyl glycerol monoethers. The alkyl glycerol monoethers were ana- lyzed and identified by gaschromatography/mass spec-trometry of their isopropylidene derivatives. This is the first report on the occurrence of free Cm, Cm, C20 and C21 Rlkyl glycerol monoethers in a sponge. AGE-1994-Губка.pdf

1-O-Alkyl-2-(ω-oxo)acyl-sn-glycerols from Shark Oil and Human Milk Fat Are Potential Precursors of PAF Mimics and GHB
Karsten Hartvigsena,b Amir Ravandib, Richard Harkewiczc, Hiroshi Kamidod, KlausBukhavea, Gunhild Hølmera and Arnis Kuksisb
Lipids, Vol. 41, no. 7 675:693 2006
Abstract: This study examines the feasibility that peroxidation and lipolysis of 1-O-alkyl-2,3-diacyl-sn-glycerols (DAGE) found in shark liver oil and human milk fat constitutes a potential source of dietary precursors of platelet activating factor (PAF) mimics and of gamma-hydroxybutyrate (GHB). Purified DAGE were converted into 1-O-alkyl-2-acyl-sn-glycerols by pancreatic lipase, without isomerization, and transformed into 1-O-alkyl-2-oxoacyl-sn-glycerols by mild autooxidation. The various core aldehydes without derivatization, as well as the corresponding dinitrophenylhydrazones, were characterized by chromatographic retention time and diagnostic ions by online electrospray mass spectrometry. Core aldehydes of oxidized shark liver oil yielded 23 molecular species of 1-O-alkyl-sn-glycerols with short-chain sn-2 oxoacyl groups, ranging from 4 to 13 carbons, some unsaturated. Autooxidation of human milk fat yielded 1-O-octadecyl-2-(9-oxo)nonanoyl-sn-glycerol, as the major core aldehyde. Because diradylglycerols with short fatty chains are absorbed in the intestine and react with cytidine diphosphate-choline in the enterocytes, it is concluded that formation of such PAF mimics as 1-O-alkyl-2-(ω oxo)acyl-sn-glycerophosphocholine from unsaturated dietary DAGE is a realistic possibility. Likewise, a C4 core alcohol produced by aldol-keto reduction of a C4 core aldehyde constitutes a dietary precursor of the neuromodulator and recreational drug GHB, which has not been previously pointed out.AGE-2006-акула-женское молоко.pdf
  1. AGE-2008-плазмалогены-мозг.pdf
  2. Brohult-Патенты.doc
  3. АГ-рак.full.PDF
  4. АГЭ-1954-R-терапия.pdf
The Intestinal Absorption and Metabolism of Chimyl Alcohol in the Rat.
Sune Bergstrom and Rolf Blomstand Acta Physiologica Scandinavica Vol.38 Issue 2, 166:172, 1957 
Abstract: Summary. Unanaesthetized rats provided with a thoracic duct fistula were fed [14C]-labeled chimyl alcohol (α-[1-14C]-hexadecylglyceryl ether) dissolved in olive oil.The labelled chimyl alcohol was absorbed to 95 per cent. The remainder was recovered in the unsaponifiable fraction of fecal lipids. About 50 per cent of the absorbed activity was recovered in the lymph lipids.In the lymph lipids about half of the radioactivity was associated with palmitic acid, indicating a splitting of the ether bond of the chimyl alcohol and subsequently oxidation of the cetyl alcohol moiety to palmitic acid in the mucosa cells. The palmitic acid was incorporated into the lymph triglycerides and phospholipids in the usual way.The other half of the activity in the lymph was present as chimyl alcohol about half of which was present as free chimyl alcohol. The remainder of the chimyl alcohol had been esterified during the absorption process and behaved chromatographically as a triglyceride that yielded chimyl alcohol after alkaline saponification.Chimyl alcohol is thus well absorbed but extensively metabolized already during the absorption process.АГЭ-1957-химил.-матабол.doc
  1. АГЭ-1958-Clinica Chim Acta.pdf
Alkoxyglycerols in Irradiation Treatment
 J. E. Ballou
NATURE Vol. 193, 112 (1962)АГЭ-1962-R-терапия.pdf
  1. АГЭ-1963-АГЭ+Плазмалогены.pdf
  2. АГЭ-1964-батил_селахил_рак.pdf
  3. АГЭ-1965-моллюски.pdf
  4. АГЭ-1966-батиловый спирт.doc
  5. АГЭ-1968-гематопоэз.PDF
  6. АГЭ-1969-Brohult-радиация-патент.pdf
  7. АГЭ-1970-химил-метаб_печень.pdf
  8. АГЭ-1971-этаноламины-биосинт РАФ.pdf
  9. АГЭ-1972-Snyder-Mangold.pdf
  10. АГЭ-1972-катаболизм-крыса.pdf
  11. АГЭ-1972-синтез алк-РАФ.pdf
  12. АГЭ-1977-алкил_виды_РС_сердце.pdf
  13. АГЭ-1977-ТСХ-длина цепи.doc
  14. АГЭ-1978-метокси-стим_иммунитет.doc
  15. АГЭ-1978-рыбы-Hayashi.pdf
  16. АГЭ-1980-метаболизм-рак.pdf
  17. АГЭ-1980-метокси-рак.doc
  18. АГЭ-1981-химил-метаболизм.doc
  19. АГЭ-1982-химил-рост клеток.doc
  20. АГЭ-1983-химил-образ-сердце.pdf
  21. АГЭ-1984-осьминог-Исай.pdf
  22. АГЭ-1985-кальмар-Hayashi.pdf
  23. АГЭ-1985-очистка АГЭ-оксидазы.pdf
  24. АГЭ-1987-кальмар-Hayashi.pdf
  25. АГЭ-1987-химил-простейшие.doc
  26. АГЭ-1989-химил-лейкемия.pdf
  27. АГЭ-1990-взаимод_нейтрофилы.doc
  28. АГЭ-1990-химил-биосинт_этаноламидов.pdf
  29. АГЭ-1990-этаноламины.pdf
  30. АГЭ-1994-рак-R-терапия.pdf
  31. АГЭ-1994-синергизм с антибиотиками.doc
  32. АГЭ-1994-химил-защита сердца-2.pdf
  33. АГЭ-1995-метокси-сниж_агрегацию.pdf
  34. АГЭ-1996-паразиты-гидролиз АГЭ.pdf
  35. АГЭ-1997-акула-структ-МС.pdf
  36. АГЭ-1997-модул_произв_PAF.pdf
  37. АГЭ-1997-переваривание-лосось.pdf
  38. АГЭ-1997-рыба-состав.pdf
  39. АГЭ-1997-химиотерапия-патент.pdf
  40. АГЭ-1998-биол_функц_плазмалогенов.pdf
  41. АГЭ-1998-монооксидаза_метаболизм.pdf
  42. АГЭ-1999-метокси-рак.pdf
  43. АГЭ-1999-онкология-питание.pdf
  44. АГЭ-2000-метокси.pdf
  45. АГЭ-2000-метокси-рак.pdf
  46. АГЭ-2000-метокси-химил-простата.doc
  47. АГЭ-2000-СО РАМН.doc
  48. АГЭ-2001-ВЭЖХ-хромасс.pdf
  49. АГЭ-2001-плазмологены-синтез_функции.pdf
  50. АГЭ-2001-сперма патент.pdf
  51. АГЭ-2001-спид.pdf
  52. АГЭ-2002-алгосомы.pdf
  53. АГЭ-2002-качество спермы кабана.pdf
  54. АГЭ-2002-метокси-липиды.pdf
  55. АГЭ-2002-проникаемость.pdf
  56. АГЭ-2002-химил-защита от окисл.pdf
  57. АГЭ-2004-акула-сперма.pdf
  58. АГЭ-2004-ВЭЖХ.pdf
  59. АГЭ-2004-Са-каналы.pdf
  60. АГЭ-2004-снижают PAF.pdf
  61. АГЭ-2005-питание при раке.pdf
  62. АГЭ-2005-синтез 18 1.pdf
  63. АГЭ-2005-стимуляция гемапоэза.pdf
  64. АГЭ-2006-ET-18-OCH3-биол_свойства.pdf
  65. АГЭ-2007-снижение пролиферации.pdf
  66. АГЭ-2007-ЭПК-липаза.pdf
  67. АГЭ-2008-активность.doc
  68. АГЭ-2008-боль_воспаление.pdf
  69. АГЭ-2008-ГЖХ.pdf
  70. АГЭ-2009-жир акулы-рак.pdf
  71. АГЭ-2009-индивидуаль_активность.pdf
  72. АГЭ-2009-моллюски.pdf
  73. АГЭ-2009-рак-акула.pdf
  74. АГЭ-2010-Активные АГЭ акулы.pdf
  75. АГЭ-2010-Биоактивные липиды.pdf
  76. АГЭ-2010-длительный прием.pdf
  77. АГЭ-2010-химил-Альцгеймер.pdf
  78. АГЭ-2011-инфекции.pdf
  79. АГЭ-2011-лечение рака.pdf
  80. АГЭ-Alkyrol-USA.pdf
  81. АГЭ-AOCS-термины.doc
  82. АГЭ-литература.pdf
  83. АГЭ-химил-литература.doc
  84. АГЭ-химил-метаболизм.pdf

ООО «Биополис» был основано на базе 2 лабораторий Института биологии моря ДВО РАН в 2009 году. В 2012 г. в число учредителей, помимо 2 физических лиц, вошел и Институт биологии моря в качестве юридического лица.

Со дня основания ИБМ ДВО РАН практически большая часть работ научных сотрудников двух базовых лабораторий в той или иной степени имела прикладной характер. Темой лаборатории сравнительной биохими на протяжении более чем 40 лет были морские липиды.
Все что относилось к химии и биохимии липидов морских организмов входило в сферу интересов сотрудников лаборатории. Отдел морской фармакологии исследовал возможности использования биологически активных соединений выделенных из морских организмов в медицине. Значительное количество разработок было оформлено в виде патентов и реализовать их в производстве стало главной задачей ООО «Биополис».
Основные направления по внедрению собственных разработок ИБМ были связаны с биологически активными соединениями липидной природы, выделенными из морских организмов.
Липиды морских организмов во многом отличаются от липидов наземных растений и животных и, прежде всего, по содержанию биологически активных веществ. Некоторые из них, например полиненасыщенные жирные кислоты ω-3 серии, относятся к наиболее значимым для человека соединениям. Эти жирные кислоты еще называют «эссенциальными», т.е. незаменимыми жирными кислотами, поскольку они могут синтезироваться только в морских организмах, но крайне важны для жизнедеятельности человека. Многие из морских липидов имеют очень большой фармакологический потенциал, например алкилглицериды при лечении и профилактике онкологических заболеваний, коррекции иммунитета.
Основные задачи ООО «Биополис» в настоящее время связаны в технологической реализацией наиболее перспективных разработок связанных с морскими липидами и исследование фармакологических свойств выделенных соединений. Мы не только ищем новые биологически активные соединения в морских организмах, но и проводим медико-биологические исследования связанные с морскими липидами с ведущими медицинскими учреждениями России.

ООО «Биополис» может предложить заинтересованным организациям следующие услуги:

  •  Разработка технологии извлечения жиров из отходов переработки рыбы и морского зверя,
  •  Разработать новые виды БАД и функциональные пищевые продукты с повышенным содержанием липидов из сырья заказчика,
  •  Предоставить на коммерческой основе технологии выделения биологически активных липидов из растительного и животного сырья,
  •  Предоставить заинтересованным организациям ингредиенты –полиненасыщенные жирные кислоты как индивидуальные, так и концентраты с любым соотношением эйкозапентаеновой и докозагексаеновой кислот, высокоочищенные природные алкиглицериды и многое другое,

 Для научных и медико-биологических исследований:

  • Поставляем индивидуальные высокоочищенные полиненасыщенные жирные кислоты для научных исследований, чистые природные фосфолипиды (фосфатидилхолин, фосфатидилэтаноламин, фосфатидилглицерин), различные стандарты липидов для газожидкостной и тонкослойной хроматографии,
  • Поставляем

    высокоочищенные рыбные жиры

    с различным содержанием полиненасыщенных кислот для научных исследований в диетологии как для человека, так и в ветеринарии.  

 

 

Большой научный потенциал сотрудников Института биологии моря ДВО РАН и сотрудников ООО «Биополис» позволяет смотреть с оптимизмом в будущее.